Improved Adaptive Non-Dominated Sorting Genetic Algorithm With Elite Strategy for Solving Multi-Objective Flexible Job-Shop Scheduling Problem

نویسندگان

چکیده

Regarding the complicated flexible job-shop scheduling problem, it is not only required to get optimal solution of problem but also ensure low-carbon and environmental protection. Based on NSGA-II algorithm, this article proposes an improved adaptive non-dominated sorting genetic algorithm with elite strategy (IA-NSGA-ES). Firstly, constructive heuristic introduced in initial population phase, weight aggregation method used restrain multi-objective mathematical model which takes total completion time, carbon emission maximum machine tools load as objectives; secondly, improved, simulated annealing replace parent generation by child enhance replaced quality. The obtains Pareto set faster. Using standard computation example practical workshop for simulation, results simulation prove that effective feasible.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Flexible Job Shop Scheduling with Multi Objective Approach

  In this paper flexible job-shop scheduling problem (FJSP) is studied in the case of optimizing different contradictory objectives consisting of: (1) minimizing makespan, (2) minimizing total workload, and (3) minimizing workload of the most loaded machine. As the problem belongs to the class of NP-Hard problems, a new hybrid genetic algorithm is proposed to obtain a large set of Pareto-optima...

متن کامل

Solving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm

This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...

متن کامل

An Adapted Non-dominated Sorting Algorithm (ANSA) for Solving Multi Objective Trip Distribution Problem

Trip distribution deals with estimation of trips distributed among origins and destinations and is one of the important stages in transportation planning. Since in the real world, trip distribution models often have more than one objective, multi-objective models are developed to cope with a set of conflict goals in this area. In a proposed method of adapted non-dominated sorting algorithm (ANS...

متن کامل

An algorithm for multi-objective job shop scheduling problem

Scheduling for job shop is very important in both fields of production management and combinatorial op-timization. However, it is quite difficult to achieve an optimal solution to this problem with traditional opti-mization approaches owing to the high computational complexity. The combination of several optimization criteria induces additional complexity and new problems. In this paper, we pro...

متن کامل

An Improved Genetic Algorithm for Multi-objective Flexible Job-shop Scheduling Problem

Flexible job shop scheduling problem (FJSP) is an extended traditional job shop scheduling problem, which more approximates to real scheduling problems. This paper presents a multi-objective genetic algorithm (GA) based on immune and entropy principle to solve the multi-objective FJSP. In this improved multi-objective GA, the immune and entropy principle is used to keep the diversity of individ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3098823